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Abstract

Define Y0 to be a geometric convolution of X if Y0 is the

sum of N i.i.d. random variables distributed as X, where N0

is geometrically distributed and independent of X. It is known

that if X is non-negative with finite second moment then as

p - 0, Y0 /EY0 converges in distribution to an exponential distri-

bution with mean 1. We derive an upper bound for d(Y0 ), the

distance between Y0 and an exponential with mean Y0 , namely for

0< p < 1/2, d(Y0 ) < cp where c = EX2 / (EX) 2 . This bound is

asymptotically (p-+O) tight. Also derived is a bound for d(Y0+Z)

where Z > 0 is independent of Y0 '

Acce;ion For
N"TI'S U R'.,&I

I.............C TIC T OD[]

NN

J.,: tI (-...t

S'S A-i
'St. r

S-



2

1. Introduction. If {X., i> l} is an i.i.d. sequence and N0

kis geometrically distributed (Pr(N 0=k) =q p, k=0,1,2,...) and

independent of {Xi}, then Y0 =  10 Xi is called a geometric1 N

convolution of X. Closely related is the random variable Y X i
1

where N = N0 I-, which is also referred to as a geometric convolution.

Geometric convolutions arise naturally in many applied probability

models. A recent paper of Gertsbakh (1984) discusses a rich variety of

applications in reliability and queues and surveys research in the area,

most of which was performed by Soviet authors. Feller (1971) Section

XI.6 elegantly discusses terminating renewal processes, the time until

termination being a geometric convolution. Several authors have

studied random sampling or "thinning" of renewal processes which results

in new renewal processes with geometric convolution interarrival times.

Jacobs (1986) investigates a geometric convolution in the context of

combining random loads and waiting for the stress to exceed a given

level. In a GIGI queue in equilibrium the waiting time distribution

is a geometric convolution and has been studied in this context by

Szekli (1986) and Kollerstrom (1976). Finally, numerous applications

arise in regenerative stochastic processes. Consider a regenerative

process (Smith (1958)) where in each cycle an event A may or may not

occur, independently of other cycles. The waiting time for A to

occur is then of the form:

(1.1) W N N0 X + Z Y + Z

10
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where A occurs for the first time in cycle N0 +1, N0  is geome-

tricially distributed with parameter equal to the probability of A

occurring during a specified cycle, and Z is the waiting time from

the beginning of cycle N0+1 until A occurs.

Keilson (1966) recognized the prevalence of (1.1) and considered

the case of small p. He showed that if the Xi are non-negative

with finite second moment then W/EW converges in distribution to

an exponential with mean 1 as p - 0. Thus the waiting time for

a rare event (small p) to occur is approximately exponential. Solovyev,

(1971) considered a sequence of random variables of the form (1.1) in

which the distribution of X varies with p and obtained conditions

for asymptotic exponentiality as p - 0. Solovyev also obtained error

bounds fo: the exponential approximation.

In this paper we seek to bound the distance between a geometric

convolution of non-negative random variables and an exponential distri-

bution with the same mean. This problem is cited by Gertsbakh (1984)

as being "of great interest for engineering applications". Defining

X, Y and Y0 as above, q - l-p, XX, i2 a EX-, " and

F Y0(t) = Pr(Y 0 > t) we derive:

_-(- + 2y - 1 ) -P -

(1.2) qe q u< F ( e +
- Y 0  - 0

Defining d(Y0) as the sup norm distance between Y0 and an

exponential distribution with mean EY0 - qw/p, it follows from

(1.2) that for 0 < p < 1/2:

I.
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(1.3) d(Y0 ) < 2yp = p2p/ .

The bound (1.3) is asymptotically (as p 0 0) sharp in the

following sense. Since the problem is scale invariant, the true

upper bound is a function of y and p, say B(y,p). We show

(Section 4) that 2yp/(2yp+q) < B(y,p) and thus B(y,p)=2yp(l+o(l)).

Bounds are also obtained for d(Y0+Z) where Z is a non-negative

random variable independent of Y0  for d(Y), and for d(Y ) where

Y is the stationary renewal distribution corresponding to Y and

Y0'

The current bounds offer improvement over those of Solovyev

(1971) in that they are derived under less restrictive conditions,

require less information about X and Z to compute, and are in

general tighter. This comparison is discussed in Section 4.

In the above X is assumed non-negative with known first two

finite moments. In Section 3 we restrict X further and obtain

improved bounds. Perhaps the most interesting of these results is

that if X is assumed NBUE (new better than used in expectation,

defined in Section 2) then d(Y0 ) is exactly equal to p.

Our methodology is a combination of reliability and renewal

theory geared to exploit the fact that Y0 is NWU (new worse than

used) as pointed out by Daley (1984) and Kollerstr6m (1976). The

technique of studying random variables through their aging properties

was developed by several authors, most notably by Barlow, Marshall and

Proschan, and is lucidly presented in the text of Barlow and Proschan

(1975).

S!
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2. Bound for General X. A distribution F on [0,-) is defined to

be NWU (new worse than used) if:

(2.1) F(t+x) > F(t)F(x) for all t, x > 0

Similarly NBU (new better than used) is defined by reversing the

inequality in (2.1). Thus F is NWU (NBU) if its survival distribu-

tion at age 0 is stochastically smaller (larger) than its survival

distribution at age x for all x > 0.
0

Let {Xi. i > 0} be an i.i.d. sequence of non-negative random

variables, let N be independent of this sequence with

Sk n

Pr(N0=k)=q p, k = 0,1,... and define S = ! Xi. and Y0 = SN
1 0

The following simple but very useful result is due to Daley (1984)

and Kollerstrom (1976).

Lemma 2.1. Y0 is NWU.

Proof. For t > 0 let Yt be distributed as the condition distri-

bution of Y0-t given Y0 > t. Define Nt = max{k:S k < t} and let

Xt be distributed as the conditional distribution of S N+l-t given

Y0 > t. Then:

st St
Y t= X + Y 0> Y0

where Xt and Y0 are independent. [J

0 A
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Lemna 2.2, below, is a slight generalization of a known result

(Barlow and Proschan (1975), p. 162), the generalization allowing

for an atom at zero which will be required for Y0 *

Lemma 2.2. Assume that W is NWU with an atom of size p at zero,

but with no other atoms. Let F be the cdf of W and M = F(k)

0
the renewal function. Then:

-1

F(t) > qe-pq e-(M(t)-l) > e-(M(t)-)

Proof. Let {N1 (t)-N 1 (0),t > 0} be a non-homogeneous Poisson process

with E(N1 (t)-N 1 (0)) = -Ln(F(t)/q). This process has its first event

epoch T distributed as WiW > 0. its next interarrival time

T T2-T 1distributed as W-TIW>T I and in general its kth inter-

arrival time Tk-Tkl distributed as W-TkI1W> Tkl. Since W is NWUT

we have:

(2.2) Tk-TklIT-l.Tkl > W for k > 2

Next consider {N2 (t)-N 2 (0), t > 0) where N2 is a renewal

process with interarrival time W. The first event epoch of

N2 (t)-N2(0) occurs at S1 % WJW > 0 - T Subsequent interarrival

times are distributed as W. It follows from S1 % T1  and (2.2)

that:

st
(2.3) Tk > Sk for k > I

4
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Thus from (2.3):

(2.4) N1 (t)-N 1(0)< N2 (t)-N 2 (0)

Taking expectations in (2.4):

-w -l

(2.5) -Ln(F(t)/q) < M(t)-q

Finally, the result follows from (2.5) and the observation that

qe-p q -l > q(l+pq- ) = 1.

Corollary 2.1. Suppose that X > 0 has F(0) < 1 and P2 EX < o.

Then:

F (t) > qe+ p q - 1 (t q- + 2y - l ) = (2y-1)e-t/EY0Fy0 -

2
where y = p2/2t 2

Proof. Case (i). We first consider the case in which X has no atoms.

Then Y, has an atom of size p at zero and no other atoms. Define

Gp as a geometrically distributed random variable with parameter
k

p(Pr(Gp=k)=q p, k=0,1,...). Define N and NX as renewal

processes with interarrival times Y0 and X respectively, and

= ENY0, MX = ENX,

Note that N has 1+G renewals at zero, and G renewals at

each renewal epoch of NX in (0,-). Thus:

1-
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(2.6) MYo(t) = q-l+pq-l(Nx(t)-l) = l+pq-M(t)

PAlternatively (2.6) can be easily proved using Laplace transforms.

Next, we note Lorden's (1970) upper bound for the renewal function:

(2.7) Mx(t) < + 2y

The result now follows from Corollary 2.1, (2.6), (2.7) and

EY0 = pq 1.

Case (ii). Now consider the general case. Define e to be uniformlyn

distributed on (0,en), n = 1,2,..., with lim n = 0, e independentn n n

i , of X, and X n = X+e . Since Xn  converges to X in quadratic mean,

n n n
2 2 G

'n.=E n -~ p and y1 n EX n/21 - y. Define Y 0n =X ni the

analogue of Y with X replaced by X . Then by choosing X = X.+en n,i 1 nl,i

Gp

we have E(Yo,n-Y0) E( e )2 0 as n =. Thus Y O, converges1 n,i 0n

in quadratic mean and thus in distribution to Y0 * By Case (i):

()>q-Pq-l(tvn+2yn - 1 ) .
(2.8) F Yo (t--q

0,n

It follows by letting n in (2.8) that the desired bound for
F Y(t) holds at all continuity points of Y But since FYo is

right continuous and the bound is a continuous function of t, it

follows that the inequality must hold for all t > 0. E
A non-negative random variable X with distribution F is

defined to be NWUE (new worse than used in expectation) if p = EX <

UN
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and:

(2.9) E(X-tlX> t) > p for all t > 0

Similarly NBUE (new better than used in expectation) has the

inequality reversed in (2.9), which implies that p must be finite.

Define X to be distributed as the stationary renewal distribution

corresponding to X; X has cdf G(x) =11 f0 F(t)dt. Let h (x)

to be the failure rate function of X defined by h (x) = F(x)/PG(x).

Noting that h (x) = [E(X-xlX>x)]- 1 it follows that NWUE is

equivalent to each of the following:

(2.10) h*(x) < - for all x > 0

' st x

(2.11) X <X

Moreover, (2.10) implies:

st
(2.12) X > Ie.

Similarly X NBUE is equivalent to each of the reverse inequalities

in (2.10) and (2.11), with (2.10) holding for all x > 0 with F(x)> 0.

Moreover NBUE distributions satisfy the reverse inequality in (2.12).

Define cc to be an exponentially distributed random variable

with mean c. For X 1n FI, X2 n F2 define D(Xl,X2) = D(FI,F2)

sup!FI(t)-F 2 (t)1. Finally define PX =1 11.
2u
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Lemma 2.3. If X is either NWUE or NBUE then V(X*,Ie) < PX"

Proof. Consider the NWUE case, the NBUE case being totally analogous.

-1

First, defining A = {t:f(t) > e- t  :

(2.13) O(X ,P) < supfG(B) - e dt (F(t)-e - t " )dt
B B A

From (2.11), (2.12) and (2.13):

(2.14) D(X*,Ie) < P - A ( G(t)-e - t - )dt < 4- J(G(t)-etl)dt = PX"

Define Y* to be the stationary renewal distribution corresponding

to Y0 and Y.

Corbllary 2.2. If X > 0 with F(O) < I and p12 < C ' then

V(Y*,(EY0)) < pq-l Y.

-i

Proof. By simple computation P = pq Y. The result now follows
y 0

from Lemmas 2.1 and 2.3. LI

Recall that d(Y0) = V(Yo,(EY0 )e), the sup norm distance between

Y0 and an exponential distribution with the same mean.

Theorem 2.1. If X > 0 with F(0) < 1 and P 2 < W
, then:

-i -t/EY -t/EY 0
(i) qe e < F Y(t) < e +Ypq

-1y

(ii) d(Y0) <pmax(2y,yq 
I) = { -p , p > 1/2

Proof. The bound on the left of (i) is the conclusion of Corollary

2.1. The upper bound follows from Lemma 2.1, (2.11) and Corollary 2.2

by:

' " , . : . . __, , J,* .''-', '* '* ..... .. -. . .. . ,_
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-t/EY 0 -t/EY 0

(2.15) Y0(t-e < Fy*(t)-e < D(Y*, (EY0 )C) < ypq

Finally (ii) follows from (i) noting that:

(2.16) e 0 (t) < e -qe-pq (2y-1)

-0

< 1-q(l-pq-l (2y-1)) = 2yp

Thus, d(Y0) < max(2yp,ypq- ) < 2yp for p < 1/2. L
I'

Corollary 2.3. Under the conditions of Theorem 2.1,

-q 1  -1d(Y) < pq max(l+yq ,2y-1) 'x pmax(l+y,2y-1).

Proof. Since Fq-F0 (t) we can multiply all three sides of
0

inequality (i) of Theorem 2.1 obtaining an upper and lower bound for

ry(t). Subtracting et/EY from both Fy(t) and the upper bound

we obtain:

pt/EY -l-t/EY 0 -t/EY -2

(2.17) FY (t)-e sup(q e -e )+yq P

m = p-l l -1)
pq (l+yq )

-t/EY

Subtracting FY(t) from e and from the lower bound for Fy(t)

yields:

-t/EY -- t/EY e-t/EY0

(2.18) e -F (t) < sup e -be

where b =e
- p q I (2y-l)
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For b > q, the right side of (2.18) equals pq p/ e2y-1

which is bounded above by p, while for b < q the right side

of (2.18) equals 1-b which is bounded above by pq- (2y-1).

Thus d(y) is bounded above by the larger of pq-1 (l+yq1l) and

pq1l(2y-1), and the result is thus proved. [D
We next seek bounds for d(Y 0+Z) with Z > 0 and independent

of Y A few Simple preliminary results are first presented.0*

First, for c 1 < C2 , a routine calculus argument proves:

C /C-c
C c1  1'2 1 ci

(2.19) V(cc , c E:) I (1 1 -(-) < 1- -c
1 2c2 c2 c2

Next, note that for any constant ~

(2.20) V(w 1+6,W2 +a) = V(w1,w 2)

It follows from (2.18) that for any random variable V independent

of W 1  and W 2  that:

(2.21) V(w 1+V,W 2+V) < V(W1,W 2)

Next let Z > 0 be independent of e with Laplace transform L

Lemma 2.4. V(ce,ce+Z) < 1-1(c- ) < _-- 1E - EZ.

-1
=l-C tProof. Let F(t) = - For t >y >0:

(2.22) F(y) = (F(t-y)-F(t))/F(t-y) > F(t-y)-F(t)
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For 0 < t < y

(2.23) F(y) = l-F(y) > l-F(t) = FI(t-y) ]-F(t)

Thus F(y) > Ft(t-y) II-F(t) for y, t > 0. Consequently:

(2.24) Pr(ce+Z>t)-Pr(ce >t) = E[F(t-Z) --F(t)] < EF(Z)

Now:

(2.25) EF(Z) = E[l-e c- Z I = l-i(c 1l) < 1-e-C E1Z

Finally, we need a simple but useful result:

Lemma 2.5. Suppose that X and Y are both either stochastically

larger or stochastically smaller than Z. Then:

V(x,Y) < max(V(X,Z),V(Y,Z))

Proof. Immediate.

The above inequalities now enable us to derive:

Theorem 2.2. Let X be as in Theorem 2.1, and let 7 > 0 be

independent of X with EZ < -. Define 6z= EZ/ii. Then:

(i) d(Y 0+Z) < [2y+6Zq
1 I1p, for 0 <p < 112.

(ii) d(Y*) < ypq -

Proof. By the triangle inequality:
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(2.26) d(Y 0+Z) < V(Y 0+Z,(EY 0 )+Z)V((EY 0 )E+Z,(E(Y 0+Z))E)

By (2.20) and Theorem 2.1:

(2.27) DV(Y 0+Z, (EY 0 )+Z) < d(Y 0) < 2yp , for 0 < p <. 1/2.

By Lema 2.5:

(2.28) V((EY,)E+Z ,(E(Y 0+Z))FE) < max[V((EY )e+Z,(EY )E:)

By Lemma 2.4:

(2.29) V((EY 0 )s+Z,(EY0 )c) < 1-e -E/Y0 =1-e -q15Z< pq cS z

By (2.19):

(2.30) D(EY+Z))c,(.~IEY < 1 - EY 0  EZ pq-1
0 0 E(Y0+Z) -EY pq z

Result (i) now follows from (2.27)-(2.30).

Finally by (2.12), Lemma 2.5, Corollary 2.2, and (2.19):

(2.31) d(Y*) < max[V(Y*,(EY 0)F),V((EY * )s,(EY0)CW]

-1
< pq y

Thus (ii) holds and the proof of Theorem 2.2 is complete.
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3. Improved Bounds Under Additional Assumptions. En this section we

outline the improvements in the results under various aging assumptions

on the distribution of X.

3.1. NBUE. Suppose that X is NBUE distributed. Then
y* st *st st

St = St 0st 0+X=Y, thus Y is NBUE. Note that Y* is

the stationary renewal distribution corresponding to both Y and Y.

YO + X*- O + X ,t0 sNUE oeta *i

It thus follows from (2.10) that:

(3.1.1) < h ( t ) < -2- for all t> 0u - y* -q1 -

Consequently:

(3.1.2) e qi < F (t+x)/F(t) < e for all t, x > 0
Y Y

Thus for p small, Y has an approximate lack of memory in

that the residual age distribution varies with t by at most p

in sup norm.

Note that from (3.1.1), (EY0)c < Y* < (EY)c and from (2.11),

St * st
Y 0 - Y < Y. Since D(Y,Y O) < p and D((EY0 )E,(EY)c) < p it

follows that:

(3.1.3) max(d(Y*,Y0 ),d(Y*,Y),d(Y*,(EY0 )e)) <p

Furthermore by Lemma 2.3:

(3.1.4) d(Y ,(EY)c) < py = pX
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From (3.1.3) and (3.1.4), using the methodology of Section 2

it is straightforward to derive:

(3.1.5) d(Y 0 ) < p

(3.1.6) d(Y) < p

(3.1.7) d(Y*) < ppx

(3.1.8) d(Yo+Z) < p(l+q-l 6Z)

(3.1.9) Fy(t) > e -YpP x

-t/gY 0 - i.- -t/EY

(3.1.10) e < F y(t) < q e

Note that Pr(Y0=O) = p/(l-qPr(X=O)l > p. It follows that for any

- non-negative X with finite mean:

(3.1.11) d(Y0 ) > p

Thus (3.1.5) and (3.1.11) show that for F NBUE:

(3.1.12) d(Y0 ) - p

Finally, we mention that when p < p/2 we can improve on (3.1.6)

by using Daley's (1986) bound for NBUE distributions applied to Y.

This yields:

(3.1.13) d(Y) < = ' 2 pp X

04
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3.2. NBU. If X is NBU then an argument similar to the NBUE case of

Section 3.1 shows that Y is also NBU. Now Y0 is NWU, Y is NBU
t0

and Y0-t!Y 0 > t s Y-t[Y > t for all t > 0. Thus:

st st
(3.2.1) Y0 < Y-t Y> t < Y

Fy(t+x) _

(3.2.2) qF (x) < <F(x) for all x, t > 0S-Y(t)

The residual age distributions thus cannot vary by more than p

in sup norm.

Since Y is NBU we can derive an analogue of Corollary 2.1 for Y:

(3.2.3) Fy(t) < ePe
-t/EY

Combine (3.1.9), (3.1.10) and (3.2.3) to obtain

-t/EY0  -t/EY py-t)E<

(3.2.4) max(e ,e -o) <F (t) < ePe - t / EY

3.3. NWUE. Assume that X is NWUE distributed. It follows from

the argument of Section 2.1 that Y is also NWUE. Thus by Lemma 2.3:

(3.3.1) D(Y*,(EY)E) < poX .

U st *
Since Y < Y ((2.11)) it follows from (3.3.1) that:

(3.3.2) Fy(t)-et/EY - -t/EY
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(3.5.3) d(Y0+Z) < P(Y+ 6 zq-)

3.6. DFR. A random variable on [0,-) is defined to be DFR

(decreasing failure rate) distributed if X-tIX> t is stochastically

decreasing in t > 0. Shantikumar (1986) recently proved that geo-

metric convolutions of DFR are DFR. Thus if X is DFR then so are YO,

Y and Y*. Using the DFR property of Y and Y0 it follows from

Brown (1983) p. 422 that: 0px
(3.6.1) max(d(Y),d(Y*)) <

(3.6.2) d(YO  _ +1 py+q

A geometric convolution of DFR random variables arises naturally

. in the study of time to first failure for repairable systems (Brown

(1984a) p. 611).

3.7. IFR. Assume that X is IFR (increasing failure rate). Then it

i! follows from Brown (1984b) that:

2
(3.7.1) M(t) > + L

-u 2

where M is the renewal function corresponding to X. Then (3.6.1)

and an analogue of Corollary 2.1 yields:

-P(M~t)-2)xP -t/EY(3.7.2) Fyt W < e - ( t - I  < e e
"I..

.~~~ ~~ .
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Since for X NBUE, 0 < <_ 1/2, we see that (3.7.2) improves

upon (3.2.3).

3.8. Pr(X=O)= Be(0,l), Known. If 8 - Pr(X=O) is known, with

0 < a < 1, then an improvement in the bound for d(Y 0 ) can be

achieved. Define X' to be distributed as the conditional distri-

bution of X given X > 0. Then:
Gp,

Gp st ,

(3.8.1) x X X', where p = p/(l-aq)
1i

(3.8.2) 'x' =X

From Theorem (2.1):

(3.8.3) d(YO) < 2yxp* =(2yXp)(l-)/(l-Bq)

The IMRL class is closed under the transformation X' - X for all

0 < 8 < 1. Thus (3.5.1), (3.8.1) and (3.8.2) imply that for X IMRL:

(3.8.4) d(Y0 ) < (YxP)(l-6)/(l-Bq)

4. Comments and Additions.

4.1. Consider X E\ Bin(l,a), i.e. Pr(X -1) - a, Pr(X -0) - 1-q.

Then Y - EX2/2(EX )2 . (2cx)- , thus as a ranges from 1 to 0 y

ranges from 1/2 to -. Thus all possible values of y are assumed
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by the Bin(l,a) family. Now, let Y0 (a) be a sum of Gp, X 's.

Then:

(4.1.1) pr(Y _ p 2 )YP
0 p+qx q+2yp

It follows from (4.1.1) that if B(y,p) denotes sup d(Y0

over all Y0 with common (y,p) that:

2

(4.1.2) B(y,p) > (+2 yp = 2yp(l+o(l))

Thus as mentioned in the introduction the bound 
2yp for d(Y0 )

is asymptotically (p -O) sharp.

4.2. Solovyev's (1971) bounds require existence and knowledge of

Em fo oem(,] n fE 2

EXm for some mc(2,3] and of EZ2  in addition to our requirements.

1/m-l
Defining ym = [EXm/(EX)m ]  his bound are 0( mp) as p - 0 while

ours are 0(yp) (Solovyev's bounds depend on ym/m-2 and break down

* for m = 2). By the log convexity of moments (Marhsall and Olkin

(1979) p. 74), ym > y for m > 2. The ratio ym/y can range from
m .

1 to - depending on EX It is difficult to make a comparison to

cover all possible cases but it appears that the current bounds are

in general tighter. For example Solovyev's bound for d(Y0 ) corres-

ponding to m = 3 is 6 >3/y > 6 times as large as ours as p - 0.

4.3. The bounds for FYo(t) derived in Sections 2 and 3 immediately

yield bounds for the renewal function of a terminating renewal process

(see Feller (1971) Section XI.6).
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4.4. Defining X = 2yp, our upper bound for d(Y0) (Theorem 2.1)

is X. I conjecture that the best upper bound is X/X+q. This bound

is achieved for the Bin(l,) family discussed in Section 4.1.

4.5. Given a sequence Y = In X n = 1,2.... where X and
O,n 1 n,i, n

pn vary with n, it follows from Theorem 2.1 that lim ynp n  0 is

a sufficient condition for exponential convergence of Y ,n/EY0,n"

This condition is not necessary as a slight modification of the example

on p. 874 of Brown and Ge (1984) demonstrates. If the X are all~n

NBUE then it follows from p. 872 of Brown and Ge (1984) that a

necessary and sufficient condition for exponential convergence of

Y /EY is limp Pn 0 (recall pn = -y in the NBUE case), and.n n n

a necessary and sufficient condition for exponential convergence of

Y .,/EY is lim p = 0.0,n 0,n n

4.6. A simple argument is now presented to show that under very general

conditions geomf::ric convolutions are asymptotically exponential as p - 0.

Consider a random sequence [X. i > 1} which obeys the strong law

of large numbers for Wc(0,cD), that is:

(4.6.1) Pr(lim X = i) = 1
n

where X 1
n n - X.. Define G to a random variable which is geome-
n n 1 p

tric.zllv distributed with parameteL p. Consider Yo(p) = X.. Now:

(4.6.2) pY0 (p) - (pG p)X GP G
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It follows from (3.1.12) that d(pGp) p and thus pG
p p

converges in distribution to an exponential with mean 1. By

a.s.
(4.6.),-+ , thus pY0 (p) converges in distribution

p
to an exponential with mean W.

In the i.i.d. case 0 < EX < c suffices for exponential

convergence of Y0 " It is not necessary that X be non-negative,

or that G be independent of {X., i > 11, or that EX 2 < -.p 1 -

It is also seen that a large variety of dependent sequences

lead to exponential convergence of geometric convolutions, for

example stationary ergodic sequences with 0 < P < -. An

interesting problem is to obtain error bounds for d(Y0 ) (also

d(Y) and d(Y0+Z)) for various classes of dependent sequences

(Xi, i > 1}.

If we relax (4.6.1) to convergence in probability but impose

the condition that G be independent of {X}, then again

pY0 (p) is asymptotically exponential.

I

- t - - -. . ,
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